Реферат турбинные масла. Минимизация воздействия масляных смазочно-охлаждающих жидкостей на здоровье человека Задание принял к исполнению студент

Нефтяные синтетические смазочные масла и смазочно-охлаждающие жидкости или смеси (СОЖ) широко применяются в промышленности (и механических, кузнечнопрессовых и других цехах для смазки и охлаждения трущихся металлических частей).

Нефтяные масла - высокомолекулярные вязкие жидкости желтовато-коричневого цвета. Основными компонентами нефтяных масел являются алифатические, ароматические и нафтеновые углеводороды с примесью их кислородных, сернистых и азотистых производных. Для получения специальных технических свойств в нефтяные масла часто вводятся различный присадки, например полиизобутилен, соединения железа, меди, хлора, серы, фосфора и др.

Большинство синтетических смазочных масел (турбинные, автотракторные, компрессорные, моторные, индустриальные и др.) получается путем полимеризации олефинов, например этилена, пропилена.

В состав СОЖ входят минеральные масла и эмульгаторы из натриевых солей нафтеновых кислот (асидол). Выпускаются эмульсии и пасты. Основой СОЖ служит эмульсолы - коллоидные растворы мыла и органических кислот в минеральных маслах, дающие с водой или спиртом устойчивые эмульсии.

В процессе работы станков смазочные масла и СОЖ нагреваются (до 500-700°С), и в воздух рабочей зоны выделяются туманы масел, пары углеводородов, альдегидом, окись углерода и другие токсические вещества.

Токсическое действие смазочных масел может проявиться главным образом при чистом попадании масла на открытые участки тела, при длительной работе в одежде, пропитанной маслом, а также при вдыхании тумана. Токсичность смазочных масел усиливается с повышением температуры кипения масляных фракций, с повышением их кислотности, и увеличением в их составе количества ароматических углеводородов, смол и сернистых соединении.

Масло и охлаждающие смеси в виде аэрозолей (ПДК для масляного аэрозоля - 5 мг/м3) могут оказывать резорбтивное действие, попадая в организм через органы дыхания, а также поражать последние. При этом наибольшую потенциальную опасность представляют смазочные масла, содержащие в своем составе летучие углеводороды (бензин, бензол и др.) или сернистые соединения.

Острое отравление

Описаны острые отравления при чистке цистерн из-под нефтяных масел, а также аэрозолем охлаждающих масел у работавших в помещении при высокой температуре. Симптомы отравления были сходными с наблюдающимися при остром .

Хроническое отравление

У рабочих механических (токари, фрезеровщики, шлифовщики) и других цехов при контакте с СОЖ часто наблюдаются хронические гипертрофические, реже - атрофические риниты, фарингиты, тонзиллиты, бронхиты. Возможно развитие пневмосклероза. Характерны вегетативно-сосудистые расстройства с преимущественным нарушением периферического кровообращения по типу ангиоспастического синдрома, напоминающего синдром Рейно, и вегетативного полиневрита. Имеются сведения о возможности развития липоидной пневмонии и опухолей дыхательных путей у лиц, длительно вдыхающих аэрозоли, и пары различных нефтяных масел. В большинстве случаев липоидная пневмония протекает бессимптомно.

Нефтяные масла и охлаждающие смеси оказывают на кожу обезжиривающее действие и способствуют закупорке ее пор. Это приводит к возникновению различных кожных заболеваний (дерматиты, экземы, фолликулиты, масляные угри); возможно развитие сенсибилизации к химическим агентам, используемым в качестве присадок

Некоторые масла могут вызывать кератодермии, бородавчатые разрастания, папилломы, кожный рак.

Длительный контакт с парами минеральных масел и эмульсий может способствовать заболеванию раком легких и бронхов, а также мочевого пузыря.

Могут иметь место повреждения кожных покровов (особенно кистей рук) смазочными маслами, попадающими под кожу во время испытания под большим давлением маслопроводов, дизелей и пр. При этом масло пробивает кожу и вызывает развитие отека в подкожной ткани. Резкие боли и отек держатся 8-10 дней.

У лиц, контактирующих с нефтяным гудроном, наблюдаются фотодерматозы и заболевания типа меланоза: пигментация кожи открытых и подвергающихся трению частей тела, усиленное фолликулярное ороговение, атрофия; явления типа меланоза Риля (темно-красные и бурые пятна, местами сливающиеся), фолликулярные кератозы на руках, туловище и по краю волосистой части головы встречаются среди работающих с масляными аэрозолями.

Лечение синдромальное.

Экспертиза трудоспособности

В зависимости от характера заболевания, наличия аллергического компонента, стойкости заболевания и его рецидивов - временное или постоянное отстранение от работы.

Профилактика

Важное значение для профилактики кожных заболеваний имеет уход за кожей до и после работы, правильное использование защитных паст и отмывочных средств. Рекомендуются различные защитные гидрофильные мази и пасты, пленкообразующие гидрофильные пасты, гидрофобные мази и пасты, пленки, силиконовый крем.

В целях уменьшения ощелачивания кожи при работе с СОЖ рекомендуется обмывать руки слабым раствором соляной кислоты во время перерывов в работе. После окончания смены - мытье рук водой и смазывание кожу мазями (крем с витаминами А, Е и т.п.). Для удаления масляных и других загрязнений применяются так называемые промышленные очистители. Соблюдение мер личной гигиены (мытье в душе, частая смена спецодежды и т. д.). Профилактика и лечение микротравм.

При работе в атмосфере, загрязненной большими концентрациями аэрозоля или паров смазочных масел, необходимо пользоваться противогазами.

Не следует допускать к работе лиц, страдающих любыми заболеваниями кожи.

Турбинное масло относится к высококачественным дистиллятным маслам, получаемым в процессе перегонки нефти. В системе смазки и регулирования применяются тур­бинные масла (ГОСТ 32-53) сле­дующих марок: турбинное 22п (тур­бинное с присадкой ВТИ-1), турбин­ное 22 (турбинное Л), турбинное 30 (турбинное УТ), турбинное 46 (тур­бинное Т) и турбинное 57 (турбо — редукторное). Масла первых четы­рех марок являются дистиллятны — ми продуктами, а последнее полу­чают смешением турбинного масла с авиационным.

Помимо масел, выпускаемых согласно ГОСТ 32-53, широкое распространение получают турбин­ные масла, выпускаемые по Меж­республиканским техническим усло­виям (МРТУ). Это прежде всего сернистые масла с различными присадками, а также масла мало- сернистых нефтей Ферганского за­вода.

В настоящее время применяется цифровая маркировка масел: циф­ра, характеризующая сорт масла, представляет собой кинематическую вязкость данного масла при темпе­ратуре 50°С, выраженную в санти — стоксах. Индекс «п» означает, что масло эксплуатируется с антиокис­лительной присадкой.

Стоимость масла находится в прямой зависимости от его марки, и чем выше вязкость. масла, тем оно дешевле. Каждый сорт масла дол­жен применяться строго по его на­значению, .и замена одного другим не допускается. Это особенно каса­ется основного энергетического обо­рудования электростанций.

Области применения различных. масел определены следующим об­разом.

Турбинное масло 22 и 22п приме­няется для подшипников и системы регулирования турбогенераторов малой, средней и большой. мощности с частотой вращения ротора 3000 об/мин. Турбинное масло 22 применяется также для подшипни­ков скольжения центробежных на­сосов с циркуляционной и кольце­вой системой смазки. Турбинное 30 применяется для турбогенераторов с частотой вращения ротора 1500 об/мин и для судовых турбин­ных установок. Турбинные масла 46 и 57 используются для агрегатов, имеющих редукторы. между турби­ной и приводом.

Таблица 5-2

Показатель

Турбинное масло (ГОСТ 32-53)

Вязкость кинематическая при 50 °С, сст. . Кислотное число, мг КОН на 1 г масла, не

Более………………………………………………………….

Стабильность:

А)осадок пссле окисления, %, ие более

Б) кислотное число после окисления, мг КОН на 1 г масла, не более….

Выход ЗОЛЫ, о/о, не более…………………………………

Время деэмульсацин, мин, не более….

Отсутствует Отсутствует

Температура вспышки в открытом тигле, ®С,!

Не ниже………………………………….. ,………………… *

Температура застывания, °С, не выше. . . Натровая проба с подкислением, баллы, не_ более…………………………………………………………………….. "

Прозрачность при 0®С…………………………………..

Прозрачное

Физико-химические свойства турбинных масел. приведены в табл. 5-2.

Турбинное масло должно от­вечать нормам ГОСТ 32-53 (табл. 5-2) и отличаться высокой стабиль­ностью своих свойств. Из основных свойств масла, характеризующих его эксплуатационные качества, ■важнейшими являются следующие:

Вязкость. Вязкость, или ко­эффициент внутреннего трения, ха­рактеризует потери на трение в мас­ляном слое. Вязкость является важ­нейшей характеристикой турбинного масла, по которой и производится его маркировка.

От величины вязкости зависят такие важные в эксплуатационном отношении величины, как коэффи­циент теплоотдачи от масла к стен­ке, потеря мощности на трение в подшипниках, а также расход мас­ла через маслопроводы, золотники, дозирующие шайбы.

Вязкость может быть выражена в еди­ницах динамической, кинематической и ус­ловной вязкости.

Вязкостью динамической, или коэффи­циентом внутреннего трення, называется ве­личина, равная отношению силы внутренне­го трения, действующей на поверхность слоя жидкости при градиенте скорости, равном единице, к площади этого слоя.

Где Ди/ДI -градиент скорости; AS - пло­щадь поверхности слоя, на которую дейст­вует сила внутреннего треиия.

В системе СГС единицей динамической вязкости является пуаз. Размерность пуаза: дн-с/см2 нли г/(см-с). В единицах технической системы динамическая вяз­кость имеет размерность кгс-с/м2.

Существует следующее отношение меж­ду динамической вязкостью, выраженной в системе СГС, и технической:

1 пуаз = 0,0102 кгс-с/м2.

В системе СИ за единицу динамической вязкости ‘принят 1 Н с/імг, или 1 Па с.

Соотношение между старыми н новы­ми единицами вязкости следующее:

1 пуаз = 0,1 Н с/мг=0,1 Па-с;

1 кгс с/м2=9,80665 Н с/м2 = 9,80665 Па-с.

Кинематической вязкостью называется величина, равная отношению динамической вязкости жидкости к ее плотности.

Единицей кинематической вязкости в системе СГС является с т о к с. Размер­ность стокса - см2/с. Сотая часть стокса на­зывается сантистоксом. В техниче­ской системе и системе СИ кинематическая вязкость имеет размерность м2/с.

Вязкость условная, или вязкость в гра­дусах Энглера, определяется как отношение времени истечения 200 мл испытываемой жидкости из вискозиметра типа ВУ или Эн­глера при температуре испытания ко вре­мени истечения такого же количества ди­стиллированной воды при температуре 20°С. Величина этого отношения выражается как число условных градусов.

Если для испытания масла применяется вискозиметр типа ВУ, то вязкость выра­жается в условных единицах, при исполь­зовании вискозиметра Энглера вязкость вы­ражается в градусах Энглера. Для характе­ристики вязкостных свойств турбинного ма­сла пользуются как единицами кинемати­ческой вязкости, так и единицами условной вязкости (Энглера). Для перевода градусов условной вязкости (Энглера) в кинематиче­скую можно воспользоваться формулой

V/=0,073193< - -, (5-2)

Где Vf - кинематическая вязкость в санти — стоксах при температуре t 3t - вязкость в градусах Энглера при температуре t Э - вязкость в градусах Энглера при 20°С.

Вязкость масла весьма сильно зависит от температуры (рис. 5-ііЗ), причем эта зависимость более резко

Рнс. 5-13. Зависимость вязкости турбинно­го масла от температуры.

22, 30, 46 - марки масла.

Выражена у тяжелых масел. Это значит, что для сохранения вязкост­ных свойств турбинного масла необ­ходимо эксплуатировать его в до­статочно узком диапазоне темпера­тур. Правилами технической экс­плуатации этот диапазон устанавли­вается в пределах 35-70°С. Экс­плуатация турбоагрегатов при бо­лее низких или высоких температу­рах масла не допускается.

Опытами установлено, что удель­ная нагрузка, которую может выдер­жать подшипник скольжения, 303- растает с увеличением вязкости масла. С повышением температуры уменьшается вязкость омазки и, следовательно, несущая способность подшипника, что в конечном счете может вызвать прекращение дейст­вия смазочного слоя и выплавление баббитовой заливки подшипника. Кроме того, при высоких температу­рах’масло быстрее окисляется и ста­реет. При низких температурах из-за увеличения вязкости сокра­щается расход масла через дози­рующие шайбы маслопроводов. В таких условиях количество — мас­ла, подаваемого в подшипник, уменьшается, и подшипник будет работать с повышенным нагревом масла.

Зависимость вязкости от давлення бо­лее точно может быть вычислена по фор­муле

Где v, - кинематическая вязкость при дав­лении р Vo - кинематическая вязкость при атмосферном давлении; р - давление, кгс/см2; а - постоянная, величина которой для минеральных масел равна 1,002-1,004.

Как видно нз таблицы, зависимость вязкости от давления менее выражена, чем зависимость вязкости от температуры, и при изменении давлення на несколько ат­мосфер этой зависимостью можно прене­бречь.

Кислотное число является показателем содержания кислот в масле. Кислотное число представ­ляет собой количество миллиграм­мов едкого кали, необходимого для нейтрализации 1 г масла.

В смазочных маслах минераль­ного происхождения содержатся главным образом нафтеновые кис­лоты. Нафтеновые кислоты, несмот­ря на слабовыраженные кислотные свойства, при соприкосновении с ме­таллами, особенно цветными, вызы­вают коррозию последних, образуя металлические мыла, которые могут выпадать в виде осадка. Корроди­рующее действие масла, содержа­щего органические кислоты, зависит от их концентрации и молекуляр­ного веса: чем ниже молекулярный вес органических кислот, тем более они агрессивны. Это относится и к кислотам неорганического проис­хождения.

Стабильность масла ха­рактеризует сохранение его основ­ных свойств в процессе длительной эксплуатации.

Для определения стабильности масло подвергают искусственному старению путем нагрева его с одно­временной продувкой воздухом, по­сле чего определяют процент осад­ка, кислотное число и содержание водорастворимых кислот. Ухудше­ние качеств искусственно состарен­ного масла не должно превышать норм, указанных в табл. 5-2.

Зольность масла - количе­ство неорганических примесей, оста­ющихся после сжигания навески масла в тигле, выраженное в про­центах к маслу, взятому для сжига­ния. Зольность чистого масла дол­жна быть минимальной. Высокая зольность указывает на плохую очи­стку масла, т. е. на наличие в мас­ле различных солей и механических примесей. Повышенное содержание солей делает масло малоустойчи­вым к окислению. В маслах, содер­жащих антиокислительные присад­ки, допускается повышенная золь­ность.

Скорость деэмульсации является важнейшей эксплуатацион­ной характеристикой турбинного масла.

Под скоростью деэмульсации по­нимается время в. минутах, в тече­ние которого полностью разруша­ется эмульсия, образовавшаяся при пропускании пара через масло в условиях испытания.

Свежее и хорошо очищенное масло плохо смешивается с водой. Вода быстро отделяется от такого масла и оседает на дне бака даже ■при непродолжительном времени пребывания масла в нем. При пло­хом качестве масла вода полно­стью не отделяется в маслобаке, а образует с маслом довольно стой­кую эмульсию, которая продолжает циркулировать в маслоеистеме. На­личие в масле водомасляной эмуль­сии изменяет вязкость. масла и все его основные характеристики, вызы­вает коррозию элементов маслоси­стемы, приводит к образованию шлама. Смазывающие свойства масла резко ухудшаются, что может привести к повреждению подшипни­ков. Процесс старения масла при наличии эмульсий еще ‘более уско­ряется.

Наиболее благоприятные усло­вия для образования эмульсий со­здаются в масляных системах па­ровых турбин, поэтому к турбинным маслам. предъявляются требования высокой деэмульсирующей способ­ности, т. е. способности масла быст­ро и полностью отделяться от воды.

Температурой вспышки масла называется та температура, до которой необходимо нагреть мас­ло, чтобы пары его образовали с воздухом смесь, способную вос­пламениться при поднесении к ней открытого огня. (

Температура вспышки характе­ризует наличие в масле легких ле­тучих углеводородов и испаряе­мость масла при его нагревании. Температура вспышки зависит от сорта и химического состава масла, причем с увеличением вязкости масла температура вспышки обыч­но увеличивается.

В процессе эксплуатации тур­бинного масла его температура вспышки понижается. Это объясня­ется испарением. низкокипящих фракций и явлениями разложения масла. Резкое уменьшение темпера­туры вспышки говорит об интен­сивном разложении масла, вызван­ном местными перегревами его. Температура вспышки определяет также и пожароопасность масла, хотя более характерной величиной в этом отношении является темпе­ратура самовоспламенения масла.

Температурой самовос­пламенения масла называется такая температура, при достижении которой масло воспламеняется без поднесения к нему открытого огня. Эта температура для турбинных ма­сел примерно вдвое выше, чем тем­пература вспышки, и зависит в ос­новном от тех же характеристик, что и температура вспышки.

Механические примеси - различные твердые вещества, нахо­дящиеся в масле в виде осадка или во взвешенном состоянии.

Масло. может загрязняться меха­ническими примесями в процессе хранения и транспортировки, а так­же в процессе эксплуатации. Осо­бенно сильное загрязнение масла наблюдается при некачественной чи­стке. маслопроводов и маслобака после монтажа и ремонтов. Нахо­дясь в масле во взвешенном состоя­нии, механические примеси вызы­вают усиленный износ трущихся де­талей. Согласно ГОСТ. механиче­ские примеси в турбинном масле должны отсутствовать.

Температура застыва­ния масла является весьма важ­ным показателем качества масла, позволяющим определить возмож­ность работы масла при низких тем­пературах. ‘Потеря подвижности масла с понижением его темпера­туры происходит вследствие выде­ления и кристаллизации растворен­ных в масле твердых углеводоро­дов.

Температурой застывания. масла называется та температура, при ко­торой испытываемое масло в усло­виях опыта загустевает настолько, что при наклоне пробирки с маслом под углом 45° уровень масла оста­ется неподвижным в течение 1 мин.

Прозрачность характеризу­ет отсутствие в масле посторонних включений: механических загрязне­ний, воды, шлама.. Прозрачность масла проверяется путем охлажде­ния пробы масла. Масло, охлажден­ное до О °С, должно оставаться про­зрачным.

В) Условия работы турбинного ма­сла. Старение масла

Условия работы масла в масля­ной системе турбогенератора счита­ются тяжелыми вследствие постоян­ного действия целого ряда неблаго­приятных для масла факторов. К ним относятся:

1. Воздействие высокой темпера­туры

Нагрев масла в присутствии воздуха способствует усиленно. му его окислению. Изменяются и дру­гие эксплуатационные характери­стики масла. Вследствие испарения легкокипящих фракций увеличива­ется вязкость, уменьшается темпе­ратура вспышки, ухудшается де — эмульсионная способность и т. д. Основной нагрев масла происходит в подшипниках турбины, где масло нагревается от 35-40 до 50-55°С. Масло главным образом нагрева­ется за счет трения в масляном слое подшипника и частично за счет передачи тепла по валу от бо­лее нагретых частей ротора.

Температура масла, выходящего из подшипника, замеряется в слив­ной линии, что дает приблизитель­ное представление о температурном режиме подшипника. Однако срав­нительно низкая температура масла на сливе не исключает возможности местного перегрева масла вследст­вие несовершенства конструкции подшипника, некачественного изго­товления или неправильной его сборки. Особенно это относится к упорным подшипникам, где раз­личные сегменты могут быть нагру­жены по-разному. Такие местные перегревы способствуют усиленному старению масла, поскольку с увели­чением температуры* свыше 75- 80°С окисляемость масла резко возрастает.

Масло может нагреваться и в самих картерах подшипников от соприкосновения с горячими стен­ками, нагреваемыми извне паром или за счет теплопередачи от кор­пуса турбины. Нагрев масла проис­ходит также в системе регулирова­ния- серводвигателях и маслопро­водах, проходящих вблизи горячих поверхностей турбины и паропрово­дов.

2. Распыливание масла вращающи­мися деталями турбоагрегата

Все вращающиеся детали - муфты, зубчатые колеса, гребни на валу, уступы и заточки вала, цент­робежный регулятор скорости и др.- создают разбрызгивание масла в картерах подшипников и колонках центробежных регуляторов скоро­сти. Распыленное масло приобрета­ет весьма большую поверхность со­прикосновения с воздухом, всегда находящимся в картере, и переме­шивается с ним. В результате мас­ло подвергается интенсивному воз­действию кислорода воздуха и окисляется. Способствует этому также большая скорость, приобре­таемая частицами масла относи­тельно воздуха.

В картерах подшипников проис­ходит постоянный обмен воздуха за счет подсасывания его в зазор по валу в связи с несколько понижен­ным давлением в картере. Пониже­ние давления в картере можно объяснить эжектирующим действи­ем сливных маслопроводов. Особен­но интенсивно разбрызгивают масло подвижные муфты с принудитель­ной смазкой. Поэтому для уменьше­ния окисления масла эти, муфты окружаются металлическими кожу­хами, уменьшающими разбрызгива­ние масла и вентиляцию воздуха. Защитные кожухи устанавливаются также и при жестких муфтах для того, чтобы уменьшить циркуляцию воздуха в картере и ограничить ско­рость окисления масла, находяще­гося в картере подшипника.

Для предотвращения вытекания масла из корпуса подшипника в осевом направлении весьма эф­фективны маслоотбойные кольца и канавки, выточенные в баббите у концов подшипника в местах выхода вала. Особенно большой эффект дает применение винтокана — вочных уплотнений УралВТИ.

3. Воздействие содержащегося в масле воздуха

Воздух в масле содержится в виде пузырьков различного диа­метра и в растворенном виде. За­хват воздуха маслом. происходит в местах наиболее интенсивного перемешивания масла с воздухом, а также в сливных маслопроводах, где масло не заполняет всего сече­ния трубы и подсасывает воздух.

Прохождение масла, содержа­щего воздух, через главный масля­ный насос сопровождается быстрым сжатием воздушных пузырьков. При этом температура воздуха в крупных пузырьках резко возра­стает. Вследствие быстроты процес­са сжатия воздух не успевает от­дать тепло окружающей среде, и поэтому процесс сжатия следует считать адиабатическим. Выделяю­щееся тепло, несмотря на ничтож­но малую абсолютную величину и на кратковременность воздействия, существенно катализирует процесс окисления масла. Пройдя иасос, сжатые пузырьки постепенно рас­творяются, а содержащиеся в воз­духе примеси (пыль, зола, водяной пар и т. д.) переходят в масло и, таким образом, загрязняют и обвод­няют его.

Старение масла за счет содержа­щегося в нем воздуха особенно за­метно в крупных турбинах, где дав­ление, масла после главного масло­насоса велико, а это приводит к значительному повышению темпе­ратуры воздуха в воздушных пу­зырьках со всеми вытекающими от­сюда последствиями.

4. Воздействие воды и конденсирую­щегося пара

Основным источником обводне­ния масла в турбинах старых кон­струкций (без отсоса пара,из лаби­ринтовых уплотнений) является пар.

Выбивающийся из лабиринто­вых уплотнений и подсасываю­щийся в корпус подшипника. Интен­сивность обводнения в этом случае в значительной мере зависит от со­стояния лабиринтового уплотнения вала турбины и от расстояния меж­ду корпусами подшипника и турби­ны. Другим источником обводнения является неисправность парозапор — ной арматуры вспомогательного турбомаслонасоса. Вода попадает также в масло и из воздуха вслед­ствие конденсации паров и через м а ело ох л а д ите ли.

В питательных турбонасосах с централизованной смазкой масло может обводняться за счет утечек воды из уплотнений насоса.

Особенно опасно обводнение масла, происходящее вследствие контакта масла с горячим паром. В этом случае масло не только обводняется, но и нагревается, что ускоряет старение масла. При этом образующиеся низкомолекулярные кислоты переходят в водный рас­твор и активно воздействуют на металлические поверхности, кон­тактирующие с маслом. Наличие воды в масле способствует образова­нию шлама, который оседает на по­верхности маслобака и маслопрово­дов. Попадая в линию смазки под­шипников, шлам может закупорить отверстия в дозирующих шайбах, установленных на нагнетательных линиях, и вызвать перегрев или да­же выплавление подшипника. Попа­дание шлама в систему регулирова­ния. может нарушить нормальную работу золотников, букс и других элементов этой системы.

Проникновение горячего пара в масло также приводит к образо­ванию масловодяной эмульсии. В этом случае поверхность соприко­сновения масла с водой резко уве­личивается, что облегчает растворе­ние в воде ниэкомолекулярных кис­лот. Масловодяная эмульсия может попасть в систему смазки и регули­рования турбины и существенно ухудшить условия ее работы.

5. Воздействие металлических поверхностей

Циркулируя в маслосистеме, масло постоянно находится в кон­такте с металлами: чугуном, сталью, бронзой, баббитом, что способствует окислению масла. Вследствие ‘воз­действия иа металлические. поверх­ности кислот образуются продукты коррозии, попадающие в. масло. Не­которые металлы оказывают ката­литическое действие на процессы окисления турбинного масла.

Все эти постоянно действующие неблагоприятные условия вызывают старение масла.

Под старением мы понимаем изменение физико-химических

Свойств турбинного масла в сторо­ну ухудшения его эксплуатацион­ных качеств.

Признаками старения масла являются:

1) увеличение вязкости масла;

2) увеличение кислотного числа;

3) понижение температуры вспышки;

4) появление кислой реакции водной вытяжки;

5) появление шлама и механиче­ских примесей;

6) уменьшение прозрачности.

Интенсивность старения масла

Зависит от качества залитого масла, уровня эксплуатации маслохозяй — ства и конструктивных особенностей турбоагрегата и маслосистемы.

Масло, имеющее признаки ста­рения, согласно нормам еще счита­ется годным. к эксплуатации, если:

1) кислотное число не превыша­ет 0,5 мг КОН на 1 г масла;

2) вязкость масла не отличается от первоначальной более чем на 25%;

3) температура вспышки понизи­лась не более чем на 10°С от. пер­воначальной;

4) реакция водной вытяжки - нейтральная;

5) масло прозрачно и не содер­жит воды и шлама.

При отклонении одной из пере­численных характеристик масла от норм и невозможности восстановить качество его на работающей турби­не масло в кратчайший срок под­лежит замене.

Важнейшим условием качествен­ной эксплуатации маслохозяйства турбинного цеха является тщатель­ный и систематический контроль ка­чества масла.

Для масла, находящегося в экс­плуатации, и предусматриваются два вида контроля: цеховой контроль и сокращенный анализ. Объем и пе­риодичность этих видов контроля иллюстрируются табл. 5-4.

При ненормально быстром ухуд­шении качеств эксплуатируемого масла сроки проведения испытаний могут быть сокращены. Испытания в этом случае проводятся по особо­му графику.

Масло, поступающее на электро­станцию, подвергается лаборатор­ному испытанию по всем показате­лям. В том случае, если один или несколько показателей не соответ­ствуют установленным нормам на свежее масло, необходимо получен­ную партию свежего масла отпра­вить обратно. Анализ масла произ­водится также и перед заливкой его в баки паровых турбин. Масло, на­ходящееся в резерве, подвергается анализу не реже 1 раза в 3. года.

Процесс старения масла, нахо­дящегося в непрерывной эксплуата­ции, приводит к тому, что масло те­ряет свои первоначальные свойства и становится непригодным к исполь­зованию. Дальнейшая эксплуатация такого масла невозможна, и требу­ется его замена. Однако, учитывая высокую стоимость турбинного масла, а также количества, в кото­рых оно применяется на электро­станциях, рассчитывать на полную замену масла нельзя. Необходимо регенерировать отработанное масло с целью дальнейшего использования.

Регенерацией масла называется восстановление первоначальных фи­зико-химических свойств бывших в зксплутации масел.

Сбор и регенерация использо­ванных масел являются одним из эффективных способов их эконо-

Мии. Нормы сбора и регенерации турбинного масла приведены в табл. 5-5.

Существующие методы регенера­ции использованных масел разделя­ются на физические, физико-хими­ческие и химические.

К физическим методам относят­ся методы, при которых в про­цессе регенерации не меняются хи­мические свойства регенерируемого масла. Основными из этих методов являются отстой, фильтрация и се — па рация. С помощью указанных ме­тодов достигается очистка ‘масел от нерастворенных в масле примесей и воды.

К физико-химическим методам регенерации относятся методы, при которых частично меняется химиче­ский состав обрабатываемого мас­ла. Наиболее распространенными из физико-химических методов явля­ются очистка масла адсорбентами, а также промывка масла горячим конденсатом.

К химическим методам регенера­ции относится очистка масел раз­личными химическими реагентами (серной кислотой, щелочью и др.). Этими методами пользуются для восстановления масел, претерпев­ших в процессе эксплуатации зна­чительные химические изменения.

Таблица 5-4

Характер контро­ля

Озъект контроля

Сроки испытания

Оэъем испытания

Цеховой конт­роль

Сокращенный анализ

Сокращенный анализ

Масло в работающих турбоагрегатах действую­щих в резервных турбо­насосах

Масло в работающих турбоагрегатах и резерв­ных турбонасосах

Масло в работающих турбонасосах

1 раз в сутки

1 раз в 2 мес при кислотном числе не вы­ше 0,5 мг КОН и пол­ной прозрачности масла и 1 раз в 2 нед при кислотном числе более 0,5 мг КОН и при наличии в масле шлама и воды

1 раз в мес при кис­лотном числе не выше 0,5 мг КОН и полной прозрачности масла и 1 раз в 2 иед при кислот­ном числе более 0,5 мг КОН и при наличии в масле шлама и воды

Проверка масла по его внешнему виду на со­держание воды, шлама и механических примесей Определение кислотно­го числа, реакции водной вытяжки, вязкости, тем­пературы вспышки, нали­чия механических приме­сей, воды

Определение кислотно­го числа, реакции вод­ной вытяжки, вязкости, температуры вспышки, наличия механических примесей и воды

Выбор способа регенерации оп­ределяется характером старения масла, глубиной изменения его экс­плуатационных качеств, а также требованиями, предъявляемыми к качеству регенерации масла. При выборе способа регенерации нужно учитывать также и стоимостные показатели этого процесса, отдавая предпочтение по возможности наи­более простым и дешевым методам.

Некоторые методы регенерации позволяют вести очистку масла на работающем оборудовании в отли­чие от способов, требующих полно­го слива масла из маслосистемы. С эксплуатационной точки зрения методы непрерывной регенерации более предпочтительны, поскольку они позволяют удлинить срок служ­бы масла без перезаливки и не до­пускают глубоких отклонений экс­плуатационных показателей масла от нормы. Однако непрерывная ре­генерация масла на работающей турбине может быть осуществлена лишь при использовании малога­баритного оборудования, не загро­мождающего помещение и допу­скающего легкий монтаж и демон­таж. К такому оборудованию отно­сятся сепараторы, фильтры, адсор­беры.

При наличии более сложного и громоздкого оборудования послед­нее размещается в отдельном поме­щении, и процесс очистки в этом случае производится со сливом масла. Наиболее дорогостоящее оборудование для регенерации масла нерационально использовать для одной станции, если учитызать периодичность его работы. Поэтому такие установки часто выполняются передвижными. Для крупных блоч­ных станций с значительным объе­мом масла, находящегося в эксплу­атации, оправдывают себя и ста­ционарные регенеративные установ­ки любого типа.

Рассмотрим основные методы очистки и регенерации турбинного масла.

Отстой. Наиболее простым и дешевым методом отделения от масла воды, шлама и механических примесей является отстой масла в специальных баках-отстойниках с коническими днищами. В этих ба­ках с течением времени происходит расслоение сред с различным удель­ным весом. Чистое масло, имеющее меньший удельный вес, перемеща­ется в верхнюю часть бака, а вода и механические примеси скаплива­ются внизу, откуда и удаляются че­рез специальную задвижку, установ­ленную в низшей точке бака.

Роль отстойника выполняет и масляный бак. Масляные баки так­же имеют конические или наклон­ные днища для сбора воды и шлама и их последующего удаления. Одна­ко в масляных баках отсутствуют надлежащие условия для расслое­ния масловодяной эмульсии. Масло в баке находится в постоянном дви­жении, что вызывает перемешива­ние верхних и нижних слоев. Нахо­дящийся в масле невыделившийся воздух сглаживает разницу между плотностями отдельных компонен­тов масловодяной смеси и затруд­няет их расслоение. Кроме того, время нахождения масла в масло­баке не превышает 8-10 мин, что явно недостаточно для качествен­ного отстоя масла.

В баке-отстойнике масло нахо­дится в более благоприятных усло­виях, так как время отстоя ничем не ограничивается. Недостатком этого метода является малая производи­тельность при значительном вре­мени отстоя. Такие отстойники за­нимают много места и увеличивают пожароопасность помещения.

Сепарация. Более производи­тельным методом очистки масла от воды и примесей является сепара­ция масла, заключающаяся в отде­лении взвешенных частиц и воды от масла за счет центробежных сил, возникающих в барабане сепарато­ра, вращающегося с высокой часто­той.

По принципу действия маслоочиститель — ные сепараторы разделяются на два типа: тихоходные с частотой вращения от 4500 до 8000 об/мин и быстроходные с частотой вращения порядка 18 000-20000 об/мин. Тихоходные сепараторы, имеющие барабан, оснащенный тарелками, нашли наибольшее распространение в отечественной практике. На рис. 5-14 и 5-15 приводятся схема уст­ройства и габаритные размеры тарельчатых сепараторов.

Сепараторы также подразделяются на вакуумные, в которых обеспечивается уда­ление из масла, помимо механических при­месей и взвешенной влаги, также частично растворенной влаги н воздуха, и на сепара­
торы открытого типа. iB зависимости от характера загрязнений очистка масла сепа­раторами может производиться способом осветления (кларификация) и способом очистки і(лурификация).

Очистку масла способом осветления применяют для отделения твердых механи­ческих примесей, шлама, а также для от­деления воды, содержащейся в масле в столь незначительном количестве, что не­посредственного удаления ее не требуется. В этом случае отделяемые от масла приме­си остаются в грязевике барабана, откуда периодически удаляются. Удаление из мас­ла загрязнений способом очистки применя­ют в тех случаях, когда масло значительно обводнено и представляет собой в сущно­сти смесь двух жидкостей с разными плот­ностями. В этом случае и вода, и масло выводятся из сепаратора непрерывно.

Турбинное масло, загрязненное механи­ческими примесями и незначительным ко­личеством влаги (до 0,3%), очищают по способу осветления. При более значитель­ном обводнении - по способу очистки. На рис. 5-114 левая сторона барабана изобра­жена собранной на работу по способу ос­ветления, а правая - по способу очистки. Стрелками показаны потоки масла и отсе­парированной воды.

Переход от одного способа работы се­паратора к другому требует переборки ба­рабана и отводящих маслопроводов.

Производительность барабана, собран­ного по способу осветления на 20-30% выше, чем прн сборке его по способу очист­ки. Для увеличения производительности се­паратора масло предварительно подогрева­ют до 60-65°С в электрическом подогрева­теле. Этот подогреватель комплектуется вместе с сепаратором и имеет терморегуля­тор, ограничивающий. температуру подогре­ва масла.

С помощью сепаратора очистку масла можно вести на работающей турбине. Такая необходимость обычно возникает при значительном обводнении масла. В этом случае всасывающий патрубок сепаратора подсоединяется к самой нижней точке грязного отсека маслобака, а очищенное масло направляется в чистый отсек. При наличии па станции двух сепараторов их мож­но подсоединить последовательно, причем первый сепаратор должен быть собран по схеме очистки, а второй - по схеме осветления. Это значительно повышает качество очистки масла.

Рис. 5-15. Общий вид и габаритные размеры сепаратора НСМ-3.

Фильтрация. Фильтрацией масла называется отделение нерас­творимых в масле примесей по­средством пропуска (продавлива — ния) через пористую фильтрующую среду. В качестве фильтрующего материала применяют фильтроваль­ную бумагу, картон, войлок, мешко­вину, бельтинг и др. Для фильтра­ции турбинных масел широко исполь­зуются рамочные фильтр-прессы. Ра­мочный фильтр-пресс имеет свой ма — слонасос ротационного или вихрево­го типа, который под давлением 0,294-0,49 МПа (3-5 кгс/см2) про­пускает масло через фильтрующий материал, зажатый между специаль­ными рамками. Загрязненный фильтрующий материал системати­чески заменяется новым. Общий вид фильтр-пресса приведен на рис. 5-16. Фильтрация масла с по­мощью фильтр-пресса обычно соче­тается с очисткой его в сепараторе. Сильно обводненное маслС) нерацио­нально пропускать через фильтр — пресс, поскольку фильтрующий ма­териал быстро загрязняется, а кар­тон и бумага теряют механическую прочность. Более разумной является схема, по которой масло пропуска­ется сначала через сепаратор, а за­тем через фильтр-пресс. При этом очистку масла можно производить на работающей турбине. При нали­чии двух последовательно работаю­щих сепараторов фильтр-пресс мож­но включить после второго по ходу масла сепаратора, собранного по схеме кларификации. Это позволит добиться особо высокой степени очистки масла.

ЛМЗ применяет в фильтр-прессе спе­циальную ткань типа «фильтр-бельтинг» с организацией процесса фильтрования под малым перепадом. Этот способ весьма эф­фективен при сильном засорении масла адсорбентом, а сам фильтр не нуждается в систематическом обслуживании.

‘Во ВТИ разработан ватный фильтр, который также с успехом применяется.

Для обеспечения нормального функцио­нирования маслосистемы турбоагрегата надлежит не только непрерывно чистить масло, но периодически (после ремонтов) очищать и всю систему.

Принятый ламинарный режим течения масла в трубопроводах системы со ско­ростью, не превышающей 2 м/с, способст­вует отложению шлама и грязи на внут­ренних и особенно на холодных поверхно­стях.

ЦКБ Главэнергоремоита разработан и проверен на практике гидродинамический способ очистки маслосистем . Он за­ключается в следующем: вся маслосистема, исключая подшипники, очищается прокачи­ванием масла со скоростью выше рабочей в 2 раза и более при температуре 60- бб^С. Этот способ основан на организации турбулентного течения в пристенной обла­сти, при котором шлам и продукты корро­зии за счет механического воздействия по­тока масла смываются с внутренних по­верхностей и выносятся в фильтры.

Гидродинамический способ очистки имеет следующие преимущества:

1) не нарушается пассивирующая плен­ка, образовавшаяся в результате длитель­ного контакта металла с эксплуатационным маслом;

2) исключает образование коррозии на баббитовых и азотированных поверхностях;

3) не требует химических растворов для смыва отложений;

4) исключает разборку маслосистемы (кроме мест установки перемычек);

5) сокращает на 20-40% трудоемкость очистки и позволяет сократить длитель­ность капитального ремонта турбоагрегата на 2-3 сут.

Эксплуатация масла, использованного для очистки систем, показала, чго физико — химические свойства его не ухудшаются, следовательно, очистка маслосистем может производиться эксплуатационным маслом.

Адсорбция. В основу этого метода очистки турбинных масел положено явление поглощения рас­творенных в масле веществ твер­дыми высокопористыми материала­ми (адсорбентами). Посредством адсорбции производится удаление из масла органических и низкомо­лекулярных кислот, смол и других растворенных в нем примесей.

В качестве адсорбентов применяются различные материалы: силикагель (БЮг), окись алюминия и различные отбеливающие земли, химический состав которых в основ­ном характеризуется содержанием БіОг и А1203 (бокситы, диатомиты, сланцы, отбе­ливающие глины). Адсорбенты обладают сильно разветвленной системой пронизы­вающих их капилляров. Вследствие этого они обладают весьма большой удельной поверхностью поглощения на 1 г вещества. Так, например, удельная поверхность акти­вированного угля достигает 1000 м2/г, си — ликагеля и окиси алюминия 300-400 м2/г, отбеливающих земель ilOO-300 м2/г.

Помимо общей поверхности, эффектив­ность адсорбции зависит от размера пор и от величины поглощаемых молекул. Диа­метр отверстий -(пор) в поглотителях сос­тавляет величину порядка нескольких де­сятков ангстрем. Эта величина соизмерима с размером поглощаемых молекул, вслед­ствие чего некоторые высокомолекулярные соединения не будут поглощаться особо мелкопористыми адсорбентами. Так, напри­мер, активированный уголь не может быть применен для очистки масла вследствие своей мелкопористой структуры. В качест­ве адсорбентов для турбинного масла мо­гут применяться материалы с размерами пор в 20-60 ангстрем, что позволяет по­глощать высокомолекулярные соединения, такие, как смолы и органические кислоты.

Получивший большое распространение силикагель хорошо — поглощает смолистые вещества и несколько хуже органические кислоты. Окись алюминия, наоборот, хоро­шо извлекает из масел органические, осо­бенно низкомолекулярные, кислоты и хуже поглощает смолистые вещества.

Эти два поглотителя относятся к искус­ственным адсорбентам и обладают высокой стоимостью, особенно окись алюминия. Бо­лее дешевыми являются природные адсор­бенты (глины, бокситы, диатомиты), хотя эффективность их значительно ниже.

Очистка адсорбентами может осуществляться двумя. методами: контактным и перколяционным.

Контактный метод обработки масла заключается в смешении масла с тонкоразмолотым порош­ком адсорбента. Перед очисткой. масло должно быть подогрето. Очистка от адсорбента производит­ся путем пропуска масла через пресс-фильтр. Адсорбент при этом теряется.

Процесс перколяционного филь­трования заключается в пропуска­нии масла, нагретого до 60-80 °С, через слой зернистого адсорбента, загруженного в специальные аппа­раты (адсорберы). В этом случае адсорбент имеет вид гранул с раз­мерами зерна 0,5 мім и выше. При перколяционном методе восстанов­ления масел в отличие от контакт­ного метода возможны восстановле­ние и повторное использование ад­сорбентов. Это удешевляет процесс очистки и, кроме того, позволяет применять для обработки масла бо­лее эффективные дорогие адсор­бенты.

Степень использования адсор­бента, а также качество очистки масла при перколяционном методе, как правило, выше, чем при кон­тактном способе. Кроме того, пер- коляционный метод — позволяет вос­станавливать масло без слива его из маслобака, на работающем обо­рудовании. Все эти обстоятельства. привели. к тому, это этот метод на­шел преимущественное распростра­нение в отечественной практике.

Адсорбер передвижного типа изображен на рис. 5-17. Он пред­ставляет собой сварной цилиндр, заполняемый гранулированным ад­сорбентом. Крышка и дно адсорбера съемные. В верхней части адсорбе­ра установлен фильтр для задержи­вания мелких частиц адсорбента. Фильтрование імасла происходит снизу вверх. Это обеспечивает наи — боле полное вытеснение воздуха и уменьшает засорение фильтра. Для удобства выемки отработанного ад­сорбента аппарат может поворачи­ваться вокруг своей оси на 180°.

Адсорбент обладает свойством поглощать не только продукты старения масла, но и воду. Поэтому,

Прежде чем подвергнуться обработ­ке адсорбентом, масло должно быть тщательно очищено от воды и шла — їма. Без этого условия адсорбент быстро потеряет свои поглощающие свойства и очистка масла будет некачественной. В общей схеме об­работки масла адсорбция должна стоять после очистки масла через сепараторы и фильтр-прессы. При ■наличии на станции двух сепарато­ров роль фильтр-пресса может вы­полнять один из сепараторов, рабо­тающий в режиме кларификации.

Использованный адсорбент мо­жет быть легко восстановлен путем продувки через него горячего возду­ха с температурой около 200ЦС. На рис. 5-18 изображена установка для восстановления адсорбентов, вклю­чающая в себя вентилятор для про­качки воздуха, электрический на­греватель для его подогрева и бак — реактиватор, куда загружается вос­станавливаемый адсорбент.

Адсорбционная очистка не мо­жет быть использована для масел, содержащих присадки, так как по­следние (кроме ионола) полностью удаляются адсорбентами.

Промывка конденсатом. Этот вид обработки масла приме­няется при увеличении кислотного числа масла и появлении в нем низ­комолекулярных водорастворимых кислот.

Как показала практика, вследст­вие промывки масла улучшаются и другие его показатели: повышается деэмульсионная способность, умень­шается количество шлама и меха­нических примесей. Для улучшения растворимости кислот масло и кон­денсат следует подогреть до темпе­ратуры 70-809С. Количество кон­денсата, необходимого для промыв­ки, составляет 50-100% количества промываемого масла. Необходимы­ми условиями качественной промыв­ки являются хорошее перемешива­ние масла с конденсатом и создание возможно большей поверхности их соприкосновения. Для обеспечения этих условий удобно воспользо-

Ваться сепаратором, где вода и. масло находятся в мелкодисперсном состоянии и хорошо перемешива­ются друг с другом. Низкомолеку­лярные кислоты переходят при этом из масла в воду, с которой они и отводятся из сепаратора. Шлам и примеси, находящиеся. в масле, увлажняются, их плотность увеличи­вается, вследствие чего улучшаются условия их сепарации.

Промывку масла.конденсатом можно производить и в отдельном бачке, где циркуляция воды и мас­ла осуществляется с помощью пара или специальным насосом. Такую промывку можно осуществлять во время ремонта турбины. Масло при этом забирается из маслобака и по­сле промывки поступает в резерв­ную емкость.

Обработка щелочами применяется при глубокой изношен­ности масла, когда все предыдущие методы восстановления эксплуата­ционных свойств масла оказывают­ся недостаточными.

Щелочь применяется для. ней­трализации в маслах органических кислот, остатков свободной серной кислоты (яри обработке масла кис­лотой), удаления эфиров и других соединений, которые при взаимодей­ствии с щелочью образуют соли, переходящие в водный раствор и удаляемые последующей обработ­кой масла.

Для регенерации отработанных масел чаще всего применяется 2,5- 4%-ный едкий натр или 5-14%-ный тринатрийфосфат.

Обработку масла щелочами мож­но производить в сепараторе анало­гично тому, как это осуществляется при промывке масла конденсатом. Процесс ведется при температуре 40-90°С. Для сокращения расхода щелочи, а также улучшения качест­ва очистки масло должно быть пред­варительно обезвожено в сепарато­ре. ‘Последующая обработка масла после восстановления его щелочью заключается в промывке его горя­чим конденсатом и обработке адсор­бентами.

Поскольку использование хими­ческих реагентов требует предвари­тельной и последующей обработки масла, появились комбинированные установки для глубокой регенерации масла, где все этапы обработки ма­сла соединены в единый технологи­ческий процесс. Эти установки в за­висимости от применяемой схемы регенерации масла имеют довольно сложное оборудование и выполня­ются как стационарными, так и пе­редвижными.

Каждая схема включает в себя специфическое для данного метода обработки оборудование: насосы, баки-мешалки, отстойники, фильтр — прессы и др. Имеются также универ­сальные установки, позволяющие ве­сти процесс регенерации масел по любому методу.

Применение присадок является наиболее современным и эффектив­ным методом сохранения фйзико — химических свойств масла в процес­се длительной эксплуатации.

Присадками называются высоко­активные химические соединения, добавляемые в масло в незначитель­ном количестве, позволяющие под­держивать основные эксплуатацион­ные характеристики масла на тре­буемом уровне в течение длитель­ного срока работы. Присадки, до­бавляемые к турбинным маслам, должны отвечать целому ряду тре­бований. Эти соединения должны быть достаточно дешевы, применять­ся в малых количествах, хорошо растворяться в масле при рабочей температуре, не давать осадков и взвесей, не вымываться водой и не извлекаться адсорбентами. Действие присадок должно давать одинако­вый эффект, для масел различного происхождения и различной степени изношенности. Кроме того, стабили­зируя одни показатели, присадки не должны ухудшать другие эксплуата­ционные показатели масла.

Нужно отметить, что присадок, удовлетворяющих всем этим требо­ваниям, пока еще нет. Кроме того, не существует соединения, способ­ного стабилизировать сразу все экс­плуатационные показатели масла. Для этой цели существуют компо­зиции различных присадок, каждая из которых воздействует на тот или иной показатель.

Для масел нефтяного происхож­дения разработаны самые различ­ные присадки, из которых для тур­бинного масла важнейшими являют­ся антиокислительная, антикорро­зийная и деэмульгирующая.

Главной по своему значению яв­ляется антиокислительная присадка, стабилизирующая кислот­ное число масла. Именно по этому показателю при неблагоприятных условиях эксплуатации масло ста­реет быстрее всего. Длительное вре­мя основным типом антиокислитель­ной присадки отечественного произ­водства была присадка ВТИ-1. Эта присадка достаточно активна, хо­рошо растворяется в масле, приме­няется в малых количествах (0,01% массы масла). Недостатком этой присадки является то, что она при­годна только для стабилизации све­жих масел. У масел, бывших в экс­плуатации и частично окисливших­ся, она уже не может задержать процесс дальнейшего окисления.

В этом отношении лучшие харак­теристики имеет присадка ВТИ-8. Она более активна и, кроме того, пригодна как для свежих масел, так и для масел, бывших в употребле­нии. В качестве недостатка следует отметить способность этого соедине­ния выделять через некоторое время взвесь, вызывающую помутнение масла. Для устранения этого явле­ния масло в начальной стадии экс­плуатации необходимо пропустить через фильтр-пресс. Присадка ВТИ-8 добавляется в количестве 0,02-0,025% массы масла.

Наиболее эффективным антиоки­слителем, получившим широкое рас­пространение как у нас, так и за рубежом, является 2,6-дитретичный бутил-4-метилфенол, получивший в СССР название ДБК (ионол). Эга присадка легко растворяется в мас­ле, не дает осадков, не извлекается из масла адсорбентами, не разру­шается при обработке масла ще­лочью и металлическим натрием. Присадка удаляется лишь при очи­стке масла серной кислотой. Приме­нение присадки ДБК в 2-5 раза удлиняет срок работы хорошо очи­щенного масла. Единственный недо­статок этого антиокислителя - уве­личенный по сравнению с другими присадками расход (0,2-0,5%). Имеются также основания к тому, чтобы и эту норму увеличить.

Антикоррозийные присад­ки применяются с целью защиты ме­талла от действия кислот, содержа­щихся в свежем масле, а также про­дуктов окисления масла. Антикор­розийный эффект сводится к образо­ванию на металле защитной пленки, защищающей его от коррозии. Од­ной из наиболее эффективных анти­коррозийных присадок является присадка В-15/41, представляющая эфир алкенил-янтарной кислоты. Ан­тикоррозийные присадки могут в не­которой мере повышать кислотное число масел и уменьшать их ста­бильность. Поэтому антикоррозий­ные присадки применяются в мини­мально необходимой концентрации совместно с антиокислительными присадками.

Деэмульгирующие присад­ки (деэмульгаторы) - вещества, применяемые для разрушения неф­тяных и масляных эмульсий. Де­эмульгаторы представляют собой водные растворы нейтрализованно- ного кислого гудрона или эмульсии минерального масла высокой степе­ни очистки с водным раствором на­триевых солей нефтяных и сульфо — нефтяных кислот. В последнее вре­мя в качестве деэмульгаторов были предложены новые соединения - ди — проксамины. Наиболее эффектив­ным из них является дипрокса — мин-157 [ДПК-157], разработанный ВНИИНП.

Воздействие вредных веществ (трансформаторное масло);

Исходные данные к разделу «Социальная ответственность»:
1. Характеристика объекта исследования (вещество, материал, прибор, алгоритм, методика, рабочая зона) и области его применения Объектом исследования являются горные породы, разных видов. Основное оборудование для исследования; Зарядное устройство, генератор импульсных напряжение (ГИН), камера для создания высоких давлении (7 МПа). Методика исследования; на горные породы будет подаваться импульсное напряжение 250 – 300 кВ. Максимальное давление, приложенное на горные породы 7МПа Рабочей зоной является лаборатория №11 ИФВТ ТПУ. Исследования и экспериментальные работы ведутся высоковольтном зале.
Перечень вопросов, подлежащих исследованию, проектированию и разработке:
1. Производственная безопасность 1.1. Анализ выявленных вредных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности: - физико-химическая природа вредности, её связь с разрабатываемой темой; - действие фактора на организм человека; - приведение допустимых норм с необходимой размерностью (со ссылкой на соответствующий нормативно-технический документ); - предлагаемые средства защиты; - (сначала коллективной защиты, затем – индивидуальные защитные средства). 1.2. Анализ выявленных опасных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности: - механические опасности (источники, средства защиты; - термические опасности (источники, средства защиты); - электробезопасность (в т.ч. статическое электричество, молниезащита – источники, средства защиты); - пожаровзрывобезопасность (причины, профилактические мероприятия, первичные средства пожаротушения). Вредные факторы: содержание летучих органических примесей (трансформаторное масло), электромагнитное излучение в широком спектре, шум, неблагоприятные условия микроклимата рабочей зоны. Опасные факторы: электрический ток, пожар, работа с повышенным давлением.
2. Экологическая безопасность: - защита селитебной зоны - анализ воздействия объекта на атмосферу (выбросы); - анализ воздействия объекта на гидросферу (сбросы); - анализ воздействия объекта на литосферу (отходы); - разработать решения по обеспечению экологической безопасности со ссылками на НТД по охране окружающей среды. Негативное воздействие на окружающую среду отсутствует. Все материалы, используемые в сборочных работах, является экологически безопасными
3. Безопасность в чрезвычайных ситуациях: - перечень возможных ЧС при разработке и эксплуатации проектируемого решения; - выбор наиболее типичной ЧС; - разработка превентивных мер по предупреждению ЧС; - разработка действий в результате возникшей ЧС и мер по ликвидации её последствий. Возможные чрезвычайные ситуации при выполнении проекта являются: замыкание остаточных зарядов, воспламенение рабочей жидкости. Превентивные меры по предупреждению ЧС: применение изоляции, недоступность токоведущих частей, изоляция электрических частей от земли. Действия в результате возникшей ЧС и ликвидации ее последствий должны быть описаны в каждой инструкции охраны труда.
4. Правовые и организационные вопросы обеспечения безопасности: - специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства; - организационные мероприятия при компоновке рабочей зоны. Расстояния между рабочими зонами, параметры освещения и микроклимата соответствуют нормам. Эффективный и безопасный труд возможен только в том случае, если производственные условия на рабочем месте отвечают всем требованиям международных стандартов в области охраны труда.




Задание выдал консультант:

Задание принял к исполнению студент:

Введение

В данном разделе будет рассматриваться безопасность и экологичность исследования процессов разрушения горных пород импульсным напряжением при давлении до 7 МПа.

На данный момент наблюдается увеличение объемов работ горнорудной и нефти газовой промышленности. Возникает необходимость поиска совершенно нового способа бурение, который должен быть экономичнее и эффективнее, по сравнению с традиционными способами бурения. Многим критериям эффективного способа разрушения горных пород и руд отвечает электроимпульсных способ, использующий для разрушения твердых диэлектрических и полупроводящих материалов энергию импульсного электрического разряда при их непосредственном электрическом пробое. При углубление буровой коронки, давление на его конце будет увеличивается. В связи с этим ведутся работы по изучению разрушения горных пород, на импульсным напряжение при повышенных давлениях.

Объектом исследования является горные породы разных видов (песчаник, гранит, известняк). На горные породы будут приложены импульсное напряжения, максимальное давлении 7 МПа. Амплитуда напряжения 250 – 300 кВ. Структурная схема оборудовании необходимых для исследования указанный на рисунке 1.

Рисунок 1. Структурная схема оборудовании для провидения исследования.

Для того чтобы канала разряда внедрился в твердо тело, поверхность твердого тела (образца) должна быть заполнена жидким диэлектриком. В качестве такого диэлектрика был взято трансформаторное масло.

Рабочей зоной является Высоковольтный зал, лабораторий №11, ИФВТ.

Камера для проведения исследования показана на рисунке 2. Камера будет находится под давлением 7 МПа, и будет наполнена трансформаторным маслом.

Рисунок 2. Камера для проведения испытании

1 Высоковольтный ввод; 2 Корпус; 3 Платформа для образцов; 4 Экранирующая сетка и поликарбонатная защита;

Техногенная безопасность

1.1 Анализ выявленных вредных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности:

Воздействие вредных веществ (трансформаторное масло);

Электромагнитное поле;

Повышенный уровень шума;

Неблагоприятные условия микроклимата рабочей зоны;

Воздействие вредных веществ (трансформаторное масло);

Трансформаторное масло - очищенная фракция нефти, получаемая при перегонке, кипящая при температуре от 300 ° С до 400 ° С. В зависимости от происхождения нефти обладают различными свойствами и эти отличительные свойства исходного сырья отражаются на свойствах масла. Оно имеет сложный углеводородный состав со средним весом молекул 220-340 а.е., и содержит основные компоненты, приведенные в таблице 1.

Таблица 1. Основные компоненты трансформаторного масло

Из основных характеристик масла отметим, что оно горючее, биоразлагаемое, практически не токсичное, не нарушающее озоновый слой. Плотность масла обычно находится в диапазоне (0.84-0.89) ×10 3 кг/м 3 .

Вредное воздействие от трансформаторного масло проявляется в том, что при замене образцов исследования, которые пропитаны трансформаторным маслом (все это происходит вручную) могут пропитается в ткань, кровеносные сосуды человека.

Для защиты человека от вредных факторов, применяется средства индивидуальной защиты; перчатки (ПЕР107).

Таблица 2. Характеристики перчаток ПЕР107

Маслобензостойкие перчатки обладают отличной стойкостью к нефти и нефтепродуктам. Рекомендуются для использования при переноске жирных и покрытых маслами предметов, обслуживании техники. Обеспечивают хороший захват на промасленных поверхностях. Изготавливаются из высококачественного двухслойного ПВХ на трикотажной основе.

Электромагнитное поле

Последствиями воздействия электромагнитного излучения на организм человека являются функциональные нарушения со стороны нервной системы, проявляющиеся в виде вегетативных дисфункций неврастенического и астенического синдрома. Лица, продолжительное время находившиеся в зоне электромагнитного излучения, имеют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, расстройства сна.

Гигиенические нормативы пребывания в электрическом поле, установленные исходя из непосредственного (биологического) воздействия на человека, приведены в таблице 3

Таблица 3. Гигиенические нормативы пребывания в электрическом поле СанПиН 2971-84

Создание безопасных условий для проведения исследовательских работ в условиях влияния действующих электромагнитных полей сводится к обеспечению допустимых уровней напряженности электрического поля и наведенного напряжения на рабочих местах; ограничению времени пребывания в зоне повышенной напряженности; соблюдению нормируемых расстояний до элементов, которые могут оказаться под опасным потенциалом; устройству защитного заземления; применению средств коллективной и индивидуальной защиты.

Так как источник электромагнитных полей находится в металлическом корпусе (Рисунок 2; 2), также изолирован металлической сеткой и поликарбонатным слоем (Рисунок 2; 4), являющимся защитным экраном от электромагнитного поля. В связи с этим величина электромагнитного излучения незначительна Е ≤ 5 кВ/м, нет необходимости в использовании дополнительных средств коллективной и индивидуальной защиты.

Повышенный уровень шума

Вредное воздействие шума не ограничивается влиянием только лишь на органы слуха. Повышенный шумовой раздражитель негативно влияет на нервную систему человека, сердечно – сосудистую систему, вызывает сильное раздражение. Повышенный шум может стать причиной бессонницы, быстрого утомления, агрессивности, влиять на репродуктивную функцию и способствовать серьезному расстройству психики.

Основным источником шума является ГИН, и камера для исследования. Характер шума тональный, в спектре шума имеются явно выраженные дискретные тона. Уровень шума превышает предельно допустимы уровень шума на рабочем месте, L доп ≤ 150 дБА . В качестве индивидуальной защиты применяется наушники champion (С1002), которая находится на балансе лабораторий №11, ИФВТ

Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

18.09.2012
Турбинные масла: классификация и применение

1. Введение

Паровые турбины существуют уже более 90 лет. Они представляют собой двигатели с вращающимися элементами, которые превращают энергию пара в механическую работу в одну или несколько ступеней. Паровая турбина обычно связана с приводной машиной, чаще всего через коробку передач.

Температура пара может достигать 560 °С, а давление находится в пределах от 130 до 240 атм. Повышение эффективности за счет повышения температуры и давления пара является фундаментальным фактором при совершенствовании паровых турбин. Однако высокие температуры и давления повышают требования к смазочным материалам, применяемым для смазки турбин. Изначально турбинные масла изготавливались без присадок и не могли удовлетворить этим требованиям. Поэтому уже около 50 лет в паровых турбинах применяются масла с присадками. Такие турбинные масла содержат ингибиторы окисления и антикоррозийные агенты и при условии соблюдения некоторых специфических правил обеспечивают высокую надежность. Современные турбинные масла также содержат небольшое количество противозадирных и противоизносных присадок, которые защищают смазываемые узлы от износа. Паровые турбины применяются на электростанциях для привода электрогенераторов. На обычных электростанциях их выходная мощность составляет 700—1000 МВт, тогда как на атомных электростанциях эта цифра составляет около 1300 МВт.


2. Требования к турбинным маслам — характеристики

Требования к турбинным маслам определяются собственно турбинами и специфическими условиями их эксплуатации. Масло в системах смазки и управления паровых и газовых турбин должно выполнять следующие функции:
. гидродинамической смазки всех подшипников и коробок передач;
. рассеивания тепла;
. функциональной жидкости для контуров управления и безопасности;
. предупреждения возникновения трения и износа ножек зубьев в коробках передач турбин при ударных ритмах работы турбин.
Наряду с этими механико-динамическими требованиями турбинные масла должны обладать следующими физико-химическими характеристиками:
. стойкостью к старению при длительной эксплуатации;
. гидролитической стабильностью (особенно если применяются присадки);
. антикоррозийными свойствами даже в присутствии воды/пара, конденсата;
. надежным водоотделением (паров и выделением конденсированной воды);
. быстрым деаэрированием — низким вспениванием;
. хорошей фильтруемостью и высокой степенью чистоты.

Только тщательно подобранные базовые масла, содержащие специальные присадки, могут удовлетворять этим строгим требованиям к смазочным материалам для паровых и газовых турбин.

3. Композиции турбинных масел

Современные смазочные материалы для турбин содержат специальные парафиновые масла с хорошими вязкостно-температурными характеристиками, а также антиоксиданты и ингибиторы коррозии. Если турбины с зубчатыми коробками передач нуждаются в высокой степени несущей способности (например: ступень отказа при испытании на шестереночном стенде FZG не ниже 8 DIN 51 354-2, то в масло вводят противозадирные присадки.
В настоящее время турбинные базовые масла получают исключительно экстракцией и гидрированием. Такие операции, как очистка и последующая гидроочистка под высоким давлением, в значительной степени определяют и влияют на такие характеристики, как окислительная стабильность, водоотделение, деаэрация и ценообразование. Это особенно справедливо в отношении водоотделения и деаэрации, так как эти свойства не могут быть существенно улучшены с помощью присадок. Турбинные масла, как правило, получают из специальных парафиновых фракций базовых масел.
В турбинные масла для улучшения их окислительной стабильности вводят фенольные антиоксиданты в сочетании с аминными антиоксидантами. Для улучшения антикоррозийных свойств применяют неэмульгируемые антикоррозийные агенты и пассиваторы цветных металлов. Загрязнения водой или водяным паром не оказывают вредного влияния, так как эти вещества остаются во взвешенном состоянии. При применении стандартных турбинных масел в турбинах с зубчатой коробкой передач в масла вводят небольшие концентрации термически стойких и стойких к окислению противозадирных/противоизносных присадок с длительным сроком службы (фосфорорганические и/или сернистые соединения). Кроме того, в турбинных маслах применяют не содержащие силиконов антипенные и депрессорные присадки.
Следует обратить пристальное внимание на полное исключение силиконов в антипенной присадке. Кроме того, эти присадки не должны отрицательно влиять на деаэрационные характеристики (очень чувствительные) масла. Присадки не должны содержать золы (например, не содержать цинка). Чистота турбинного масла в резервуарах в соответствии с ISO 4406 должна быть в пределах 15/12. Необходимо полностью исключить контакты турбинного масла и различных контуров, проводов, кабелей, изоляционных материалов, содержащих силиконы (строго соблюдать при производстве и применении).

4. Турбинные смазочные материалы

Для газовых и паровых турбин обычно в качестве смазочных материалов применяются специальные парафиновые минеральные масла. Они служат для защиты подшипников вала турбины и генератора, а также коробки передач в соответствующих конструкциях. Эти масла также могут применяться в качестве гидравлической жидкости в системах управления и безопасности. В гидравлических системах, эксплуатируемых под давлением около 40 атм (если имеются раздельные контуры для смазочного масла и масла для регулирования, так называемые спиральные контурные системы) обычно применяются огнестойкие синтетические жидкости типа HDF-R . В 2001 г. был пересмотрен DIN 51 515 под названием «Смазочные и управляющие жидкости для турбин» (часть 1-L-TD официальный сервис, спецификации), а новые так называемые высокотемпературные турбинные масла описаны в DIN 1515, часть 2 (часть 2-L-TG смазочные материалы и управляющие жидкости для турбин — для высокотемпературных условий эксплуатации, спецификации). Следующий стандарт — ISO 6743, часть 5, семейство Т (турбины), классификация турбинных масел; последний вариант стандарта DIN 51 515, опубликованный в 2001/2004 гг., содержит классификацию турбинных масел, которая приведена в табл. 1.

Таблица 1. DIN 51515 классификация турбинных масел. Проект 1999
Характеристика Нормальные турбинные масла, турбинные масла для паровых турбин
DIN 51 515-1 DIN 51 515-2
С противозадирными присадками DIN 51 515-1 DIN 51 515-2
FZG Приложение А Приложение А

Требования, выдвигаемые в DIN 51 515-1 — масла для паровых турбин и DIN 51 515-2 — высокотемпературные турбинные масла, приведены в табл. 2 и 3.

Таблица 2. Требования к маслам для паровых турбин. D1N 51 515. Часть 1, июнь 2001 г. — LTD для нормальных условий эксплуатации
Испытания Предельные значения Сопоставимы с ISO * стандартами
Группа смазочных масел TD 32 TD 46 TD 68 TD 100
Класс вязкости по ISO 1) ISO VG 32 ISO VG 46 ISO VG 68 ISO VG 100 DIN 51 519 ISO 3448
Кинематическая вязкость: при 40 °С DIN 51 562-1 или DIN 51 562-2 или DIN EN ISO 3104 ISO 3104
минимальная, мм 2 /с 28,8 41,4 61,2 90,0 110
максимальная, мм2/с 35,2 50,6 74,8 110
Температура вспышки, минимальная, °С 160 185 205 215 DIN ISO 2592 ISO 2592
Деаэрационные свойства 4) при 50 °С максимальные, мин. 5 5 6 Не нормируется DIN 51 381
Плотность при 15 °С, максимальная, г/мл DIN 51 757 или DIN EN ISO 3675
≤-6 ≤-6 ≤-6 ≤-6 DIN ISO 3016 ISO 3016
Кислотное число, мг КОН/г

Должно быть указано поставщиком

DIN 51558, часть 1 ISO 6618
Зольность (оксидная зола) %масс.

Должно быть указано поставщиком

DIN EN ISO 6245 ISO 6245
DIN 51 777-1 ISO/D1S 12 937
DIN ISO 5884с DIN ISO 4406 ISO 5884 с ISO 4406
Водоотделение (после обработки паром), максимальное, с 300 300 300 300 4 51 589, часть 1
Медная коррозия, максимальная Коррозионная агрессивность (3 ч при 100 °С)

2-100 A 3

DIN EN ISO 2160 ISO 2160
Защита от коррозии стали, максимальная

Отсутствие ржавчины

DIN 51 585 ISO 7120
Стойкость к окислению (TOST ) 3) Время в часах до достижения дельта NZ 2,0 мг КОН/г 2000 2000 1500 1000 DIN 51 587 ISO 4263
Пена: ISO 6247
Ступень III при 24 °С после 93 °С, максимально, мл
*) Международная организация стандартизации
1) Средняя вязкость при 40 °С в мм 2 /с.


4) Температура испытания составляет 25 °С и должна быть указана поставщиком, если потребителю нужны значения при низких температурах.
Приложение А (нормативное) для турбинных масел с противозадирными присадками. Если поставщик турбинного масла также поставляет набор турбинных зубчатых передач, то масло должно выдерживать минимум восьмую ступень нагрузки по DIN 51 345, часть 1 и часть 2 (FZG ).

Атмосферный воздух поступает в воздухозаборник 1 через систему фильтров и подается на вход многоступенчатого осевого компрессора 2. Компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания 3 , куда через форсунки подается и определенное количество газового топлива. Воздух и топливо перемешиваются и воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины 4. Часть полученной энергии расходуется на сжатие воздуха в компрессоре 2 турбины. Остальная часть работы передаётся на электрический генератор через ось привода 7. Эта работа является полезной работой газовой турбины. Продукты сгорания, которые имеют температуру порядка 500-550 °С, выводятся через выхлопной тракт 5 и диффузор турбины 6, и могут быть далее использованы, например, в теплоутилизаторе, для получения тепловой энергии.

Таблица 3. Требования к высокотемпературным турбинным маслам, DIN 51 515, часть 2, ноябрь 2004 г. L-TG для эксплуатации в условиях высоких температур
Группа смазочных масел

Предельные значения

Испытания в соответствии с 2) Сопоставимы с ISO* стандартами
TG 32 TG 46
Класс вязкости по ISO 1) TSOVC 32 TSOVC 46 DIN 51 519 ISO 3448
Кинематическая вязкость: при 40 °С, DIN 51 550 в соответствии
с DIN 51 561 или DIN 51 562-1
ISO 3104
минимальная, мм 2 /с 28,8 41,4
максимальная, мм 2 /с 35,2 50,6
Температура вспышки (в закрытом тигле), минимальная, °С 160 185 DIN ISO 2592 ISO 2592
Деаэрационные свойства 4) при 50 °С, максимальные, мин. 5 5 DIN 51 381
Плотность при 15 °С, минимальная, г/мл DIN 51 757 ISO 3675
Температура застывания, максимальная, °С DIN ISO 3016 ISO 3016
Кислотное число, мг КОН/г Должно быть указано поставщиком DIN 51 558-1 ISO/DIS 6618
Зола (оксидная зола), %масс. Должно быть указано поставщиком DIN EN 7 ISO 6245
Содержание воды, максимальное, мг/кг

DIN 51 777-1

ISO/DIS 12937
Уровень чистоты, минимальный DIN ISO 5884 с DIN ISO 4406 ISO 5884 с ISO 4406
Пена:
Ступень 1 при 24 °С, максимально, мл
Ступень II при 93 °С, максимально, мл
Ступень III при 24 °С после 93 °С, максимально, м;
Деэмульгируемость, мин Должно быть указано поставщиком DIN 51 599 ASTM-D 1401
Водоотделение (после обработки паром), максимальная, с 300 300 DIN 51 589, часть 1
Медная коррозия, максимальная DIN 51 759 ISO 2160
Защита стали от коррозии.
Коррозионная агрессивность, максимальная
DIN 51 585 ISO/DIS 7120
Стойкость к коррозии 3) DIN 51 587 ISO DIS 4263
Время в часах до достижения дельта NZ 2,0 мг КОН/г ASTM-D 2272
RBOT , мин
Модифицированный RBOT , % времени минуты в немодифицированном методе испытания
* Международная организация стандартизации.
** General Electric рекомендует только 450 мин.
1) Средняя вязкость при 40 °С в мм2/с.
2) Образец масла должен храниться без контакта со светом перед испытанием.
3) Испытание на стойкость к окислению должно проводиться по типовой методике, в связи с продолжительностью испытания.
4) Температура испытания составляет 25 °С и должна быть указана поставщиком, если потребителю нужны значения при низких температурах
Приложение А (нормативное для турбинных масел с противозадирными присадками). Если поставщик турбинного масла также поставляет набор турбинных зубчатых передач, то масло должно выдерживать минимум восьмую ступень нагрузки по DIN51 345, часть 1 и часть 2 (FZG ).

ISO 6743-5 классифицирует турбинные масла по их назначению (для паровых или газовых турбин) и по содержанию противозадирных агентов (табл. 4).

Таблица 4. ISO 6743-5 Классификация турбинных смазочных масел в сочетании с ISO/CD 8068
Характеристика Нормальные турбинные масла Высокотемпературные турбинные масла
Без противозадирных присадок ISO-L-TSA (пар)
ISO-L-TG 4(Tia )
ISO-L-TGB (газ)
ISO-L-TGSB (= TGA + TGB качество)
С противозадирными присадками FZG ступень нагрузки не меньше 8 ISO-L-TSE (пар)
ISO-L-TGE (газ)
ISO-L-TGF
ISO-L-TGSE

Спецификация согласно ISO 6743-5 и в соответствии с ISO CD 8086 «Смазочные материалы. Индустриальные масла и родственные им продукты (класс L )— Семейство T (турбинные масла), ISO-L-Т все еще находится в стадии рассмотрения» (2003).
Синтетические жидкости типа ПАО и сложные эфиры фосфорной кислоты также описаны в ISO CD 8068 2003 г. (см. табл. 5).

Таблица 5. Классификация смазочных масел дли турбин, ISO 6743-5 в сочетании с ISO/CD 8068
Общее назначение Состав и свойства Символ ISO-L Типичное применение
1) Паровые турбины непосредственно соединенные, или с зубчатыми передачами для нагрузки в нормальных условиях
2) Базовые турбины непосредственно соединенные, или с зубчатыми передачами пля нагрузки, в нормальных условиях
Очищенные минеральные масла с соответствующими антиоксидантами и ингибиторами коррозии TSA TGA Генерирование электроэнергии и индустриальные приводы и их соответствующие системы управления, судовые приводы, их улучшенная несущая способность не требуется для зубчатого зацепления
3) Паровые турбины, непосредственно соединенные или с зубчатыми передачами для нагрузки, высокая несущая способность
4) Газовые турбины, непосредственно соединенные или с зубчатыми передачами для нагрузки, высокая несущая способность
Очищенные минеральные масла с соответствующими антиоксидантами и ингибиторами коррозии, с дополнительными противозадирными характеристиками для смазки зубчатых передач TSF

TGF

Генерирование электроэнергии и индустриальные приводы и их соответствующие системы управления, где для зубчатых передач требуется улучшенная несущая способность
5) Газовые турбины, непосредственно связанные или с зубчатыми передачами для нагрузки, более высокая несущая способность Очищенные минеральные масла с соответствующими антиоксидантами и ингибиторами коррозии — для более высоких температур TGB
TGSB
(= TSA + TGB)
Генерирование электроэнергии и и индустриальные приводы и их соответствующие системы управления, где требуется высокотемпературная стойкость из-за высоких температур на отдельных участках
6) Прочие смазочные материалы (в соответствии с ISO 6749-5 и ISO/CD 8068)
а) TSC — синтетические жидкости для турбин без специфических огнестойких свойств (например, ПАО);
б) TSD — синтетические жидкости для паровых турбин на базе сложных эфиров фосфорной кислоты с огнестойкими свойствами (сложный эфир алкилфосфата);
в) TGC — синтетические жидкости для газовых турбин без специфических огнестойких свойств (например, ПАО);
г) TGD — синтетические жидкости для газовых турбин на базе сложных эфиров фосфорной кислоты с огнестойкими свойствами (сложный эфир алкилфосфата);
д) TCD — синтетические жидкости систем управления на базе сложных эфиров фосфорной кислоты с огнестойкими свойствами

Таблица 6. Основные требования к турбинным маслам со стороны ведущих мировых производителей.
Характеристики Siemens TLV 901304 Масла для паровых и газовых турбин 1) General Electric GEK 101 941А Масла для газовых турбин с противозадирными/ противоизносными присадками с температурами выше 260 °С 2) General ElectricGEK 32568 Е . Масла для газовых турбин с температурой подшипников выше 260 °С 3) Alstom HTGD 90717 Масла для паровых и газовых турбин с и без противозадирных и противоизносных присадок ISO VG 32/46 4) Alstom HTGD 90117 Масла для паровых и газовых турбин с и без противозадирных и противоизносных присадок ISO VG 68 4) Испытание
по DIN ISO
Испытание по ASTM
Кинематическая вязкость при 40 °С, мм 2 /с ISO VG VG 32: ±10% VG 46:±10% 28,8-35,2
28,8-35,2
VG 32: +10%
VG 46: +10%
VG 68: ±10% DIN 51 562-1 ASTM-D 445
Плотность (API °) 29-33.5 29-33.5 ASTM-D 287
Деаэрационные свойства при 50 °С, мин ≤4 5 (максим) 5 (максим)я <4 <7 DIN 51 381 ASTM-D 3427
Кислотное число, мгКОН/г DIN 51 558-1 ASTM-D 974
без ЕР/АW присадок ≤0,2 0,2 (максим) 0,2 (максим) 0,2 (максим) 0,2 (максим)
с ЕР/AW присадками ≤0,3 0,3 (максим) 0,3 (максим)
Содержание воды, мг/кг ≤ 100 DIN 51777-1 ASTM-D 892
Водоотделение, с < 300 ≤ 300 ≤ 300 DlN 51 589-1
Деэмульгируемость, минуты ≤20 <30 ≤30 DIN 51 599 ASTM-D 1401
Плотность при 15 °С, кг/м 3 ≤900 ХХО ≤900 DIN 51 757 ASTM-D 1298
Температура вспышки DIN ISO 2592 ASTM-D 92
ISO VG 32, °С > 160 215(миним) 215(миним) VG 32 и 46 ≥200 VG 68: ≥ 205
ISO VG 46, °С > 185
Температура застывания, °С <-6 -12(максим) -12 (максим) <-9 <-6 ISO 3016 ASTM-D 97
Распределение частиц {ISO класс) ≤ 17/14 18/15 18/15 ISO 4406
Цвет ≤ 2 2,0 (максим) 2,0 (максим) DIN ISO 2049 ASTM-D 1500
Медная коррозия. Коррозионная агрессивность < 2-100 A3 1 В (максим) 1 В (максим) ≤ 2-100 A3 < 2-100 A3 DIN EN ISO 2160
Защита стали от коррозии, Коррозионная агрессивность 0-В 0-В 0-В 0-В DIN 51 585 ASTM-D 665
Стойкость к старению ≤ 2,0 ≤ 2,0 ≤ 2,0 1 1 DIN 51 587 ASTM-D 943
Увеличение кислотности в мг КОН/гр после 1 ч испытаний по методу TOST (после 2500 ч) (после 2500 ч) (после 3000 ч) (после 2000 ч) * (после 2000 ч) *
Дополнительные требования к турбинным маслам для применения в коробках передач, метод FZG:A /8.3/90 ступень отказа ≥8 ≥8 8 8 DIN 51 354 ASTM-D 1947
Коксуемость по Рэмсботтому, % 0,1% (максима) (или эквив) 0,1% (максима) (или эквив) ASTM-D 524
Стойкость к окислению во вращающейся бомбе, мин 500 (миним) 500 (миним) > 300 (миним) > 300 (миним) ASTM-D 2272
Стойкость к окислению во вращающейся бомбе (модифицированной RBOT c N 2 продувкой 85% (миним) 85% (миним) ASTM-D 2272
Индекс вязкости (ИВ) 95 (минима 95 (миним) ≥90 ≥90 ASTM-D 2270
Атомно-эмиссионная спектроскопия <5 ppm <5 ppm <5 ppm ASTM-D 4951
Содержание цинка Ступень I, минимум 93%
Фильтруемость Ступень I, минимум 93% ISO 13 357-2
* Кислотное число < 1,8 мг КОН/г; шлам < 0,4% по DP 7624.
Базовые масла:
1) Минеральные масла или синтетические масла с присадками для повышения антикоррозионных свойств и стойкости к старению (дополнительно ЕР/А W присадки в случае смазки коробки передач).
2) Нефтяное смазочное масло — синтетические углеводороды с большей высокотемпературной окислительной стабильностью и R&O ингибитор EP/AW присадки.
3) Нефтяное смазочное масло — синтетические углеводороды с большей высокотемпературной окислительной стабильностью и R&O ингибиторами
4) Очищенное минеральное масло: с присадками — в основном ингибиторами старения и коррозии (без ЕР/AW присадок)
Прочие важные спецификации (примеры):
Westinghouse I.L. 1250-5312 — Паровые турбины
21 T 059I — Газовые турбины
Solar ES 9-224 — Газовые турбины
5) L.S . ступень нагрузки.

5. Контуры циркуляции турбинных масел

Для смазки турбин на электростанциях особенно важную роль играют контуры циркуляции масла. Паровые турбины обычно снабжены контурами циркуляции масла под давлением и контурами регулирования, а также раздельными емкостями для контура смазочного масла и масла контура регулирования.
В нормальных условиях эксплуатации основной масляный насос с приводом от турбинного вала всасывает масло из емкости и нагнетает в контуры регулирования и смазки подшипников. Контуры давления и регулирования обычно находятся под давлением в пределах 10—40 атм (давление главного турбинного вала может достигать 100—200 атм). Величина температуры в масляной емкости находится в пределах от 40 до 60 °С. Скорость подачи масла в контуры питания составляет от 1,5 до 4,5 м/сек (около 0,5 м/сек в возвратном контуре). Охлажденное и прошедшее через редукционные клапаны масло поступает в подшипники турбины, генератора и, возможно, коробки передач под давлением 1—3 атм. Индивидуальные масла возвращаются в масляный бак под давлением, равным атмосферному. В большинстве случаев подшипники вала турбины и генератора имеют вкладыши из белого металла. Аксиальные нагрузки обычно поглощаются подшипниками. Контур смазочного масла газовой турбины в основном подобен контуру паровой турбины. Однако в газовых турбинах иногда применяют подшипники качения и подшипники скольжения.
Крупные масляные контуры снабжены центробежными фильтрационными системами. Эти системы обеспечивают удаление мельчайших частиц загрязнителей вместе с продуктами старения и шламом. В зависимости от размера турбины в переточных системах масло пропускают через фильтры каждые пять часов с помощью специальных насосов. Масло выводится из самой нижней точки масляной емкости и подвергается фильтрации непосредственно перед возвращением обратно. Если масло отбирают из основного потока, то скорость потока должна быть снижена до 2—3% от производительности основного насоса. Часто применяют следующие виды оборудования: масляные центрифуги, бумажные фильтры, целлюлозные картриджные фильтры тонкой очистки и фильтрующие установки с сепараторами. Рекомендуется также использование магнитного фильтра. Иногда фильтры байпасного и основного потока снабжаются охлаждающими устройствами для снижения температуры фильтруемого масла. Если существует вероятность попадания в систему воды, пара или других загрязнителей, то должна быть предусмотрена возможность удаления масла из емкости с помощью мобильного фильтра или центрифуги. Для этого в нижней части емкости необходимо предусмотреть специальный соединительный патрубок, который также может быть использован для отбора проб масла.
Старение масла также зависит от того, как и с какой скоростью масло прокачивают через контур. В случае если масло прокачивается слишком быстро, то избыточный воздух диспергируется или растворяется (проблема: кавитация в подшипниках, преждевременное старение и т. д.). Также может иметь место вспенивание масла в масляной емкости, но эта пена обычно быстро разрушается. Положительно влиять на деаэрацию и вспенивание в масляной емкости можно с помощью различных инженерных мер. К таким мерам относятся масляные емкости с большей площадью поверхности и возвратные контуры с трубами большего сечения. Простые меры, например возвращение масла в емкость через перевернутую U-образную трубу, тоже положительно влияют на деаэрационную способность масла и дают хороший эффект. Установка дросселя в емкости также дает положительные результаты. Эти меры продлевают интервал времени, за который вода и твердые загрязнители могут быть удалены из масла.

6. Контуры для промывочного турбинного масла

Все маслопроводы перед вводом в эксплуатацию должны быть механически очищены и промыты. Следует удалять из системы даже такие загрязнители, как чистящие средства и агенты, предотвращающие коррозию (масла/пластичные смазки). Затем необходимо ввести масло с целью промывки. Для промывки требуется около 60-70% от общего объема масла. Промывочный насос должен работать на полную мощность. Подшипник рекомендуется удалять и временно заменять чистым (во избежание попадания загрязнителей в зазор между валом и вкладышами подшипников). Масло следует неоднократно подогревать до температуры 70 °С, а затем охлаждать до 30 °С. Расширение и сужение в трубопроводе и фитингах рассчитаны на удаление грязи в контуре. Вкладыши подшипников вала должны промываться последовательно для поддержания высокой скорости работы. После 24-часовой промывки масляные фильтры, масляные сита и сита масла для подшипников могут быть установлены. Мобильные фильтровальные установки, которые также могут быть использованы, должны иметь размер ячеек не больше 5 мкм. Все части цепи снабжения маслом, включая запасное оборудование, должны быть тщательно промыты. Все узлы и детали системы должны быть очищены снаружи. Затем промывочное масло сливают из масляного бака и холодильников. Возможно и вторичное его использование, но только после очень тонкой фильтрации (байпасная фильтрация). Кроме того, масло должно быть предварительно подвергнуто тщательному анализу на предмет соответствия требованиям спецификации DIN 51 515 или специальных спецификаций на оборудование. Промывку следует производить до тех пор, пока на фильтре не будут обнаружены твердые загрязнители и/или не будет зарегистрировано поддающееся измерению повышение давления в байпасных фильтрах после 24 ч. Рекомендуется проводить промывку в течение нескольких дней, а также анализ масла после любых модификаций или ремонтных работ.

7. Мониторинг и техническое обслуживание турбинных масел

В нормальных условиях вполне достаточно производить мониторинг масла с интервалом в 1 год. Как правило, эта процедура осуществляется в лабораториях производителя. Кроме того, необходима еженедельная визуальная проверка для своевременного обнаружения и удаления загрязняющих масло примесей. Наиболее надежным методом является фильтрование масла с помощью центрифуги в байпасном контуре. При эксплуатации турбины следует учитывать загрязнение окружающего турбину воздуха газами и другими частицами. Такой метод, как подпитка утраченного масла (освежение уровней содержания присадок), заслуживает внимания. Фильтры, сита, а также такие параметры, как температура и уровень масла, должны проверяться регулярно. В случае продолжительного простоя (более двух месяцев) масло следует ежедневно рециркулировать, а также регулярно проверять содержание воды в нем. Контроль отработанных:
. огнестойких жидкостей в турбинах;
. отработанных смазочных масел в турбинах;
. отработанных масел в турбинах.
осуществляют в лаборатории поставщика масла. В VGB Kraftwerktechnic Merkbl tter , Германия (VGB — ассоциация германских электростанций) описан анализ, а также требуемые значения различных свойств.

8. Срок службы масел для паровых турбин

Обычный срок службы паровых турбин составляет 100 000 ч. Однако уровень антиоксиданта снижается до 20-40% от уровня в свежем масле (окисление, старение). Срок жизни турбины в значительной степени зависит от качества турбинного базового масла, условий эксплуатации — температуры и давления, скоости циркуляции масла, фильтрации и качества технического обслуживания и, наконец, от количеств подпитанного свежего масла (это помогает поддерживать адекватные уровни присадок). Температура масла в турбине зависит от нагрузки на подшипники, размеров подшипников и скорости течения масла. Радиационная теплота может также быть важным параметром. Фактор циркуляции масла, т. е. отношение между объемом потока h -1 и объемом емкости с маслом, должен быть в пределах от 8 до 12 ч -1 . Такой относительно низкий фактор циркуляции масла обеспечивает эффективное разделение газообразных, жидких и твердых загрязнителей, тогда как воздух и другие газы могут быть выпущены в атмосферу. Кроме того, низкие факторы циркуляции снижают термические нагрузки на масло (в минеральных маслах скорость окисления увеличивается вдвое при повышении температуры на 8-10 К). Во время эксплуатации турбинные масла подвергаются значительному обогащению кислородом. Турбинные смазочные материалы испытывают воздействие воздуха в ряде точек вокруг турбины. Температуры подшипников могут контролироваться с помощью термоэлементов. Они очень высоки и могут достигать 100 °С, а в смазочном зазоре даже выше. Температура подшипников может достигать 200 °С при локальном перегреве. Такие условия могут встречаться только в больших объемах масла и при высокой скорости циркуляции. Температура масла, сливаемого с подшипников скольжения, обычно находится в пределах 70-75 °С, а температура масла в баке может достигать 60—65 °С в зависимости от фактора циркуляции масла. Масло остается в баке в течение 5—8 мин. За это время воздух, увлеченный потоком масла, деаэрируется, твердые загрязнители выпадают в осадок и их выделяют. Если температура в баке выше, то компоненты присадок с более высоким давлением насыщенных паров могут испариться. Проблема испарения усложняется при установке устройств экстракции паров. Максимальная температура подшипников скольжения ограничивается пороговыми температурами вкладышей подшипников из белого металла. Эти температуры составляют около 120 °С. В настоящее время разрабатывают вкладыши подшипников из металлов, менее чувствительных к высоким температурам.

9. Масла для газовых турбин — применение и требования

Газотурбинные масла применяются в стационарных турбинах, используемых для выработки электроэнергии или тепловой энергии. Компрессорные воздуховки нагнетают давление газа, который подается в камеры сгорания, до 30 атм. Температуры сгорания зависят от типа турбины и могут достигать 1000 °С (обычно 800—900 °С). Температуры выхлопных газов обычно колеблются около 400—500 °С. Газовые турбины с мощностью до 250 МВт применяются в городских и пригородных системах парового отопления, в бумагоделательной и химической промышленности. Преимущества газовых турбин заключаются в их компактности, быстроте запуска (<10 минут), атакже в малом расходе масла и воды. Масла для паровых турбин на базе минеральных масел применяются для обычных газовых турбин. Однако следует помнить о том, что температура некоторых подшипников в газовых турбинах выше, чем в паровых турбинах, поэтому возможно преждевременное старение масла. Кроме того, вокруг некоторых подшипников могут образовываться «горячие участки», где локальные температуры достигают 200—280 °С, при этом температура масла в баке сохраняется на уровне порядка 70—90 °С (горячий воздух и горячие газы могут ускорить процесс старения масла). Температура масла, поступающего в подшипник, чаще всего бывает в пределах 50— 55 °С, а температура на выходе из подшипника достигает 70—75 °С. В связи с тем, что объем газотурбинных масел обычно меньше, чем объем масел в паровых турбинах, а скорость циркуляции выше, их срок службы несколько короче. Объем масла для электрогенератора мощностью 40—60 МВт («General Electric» ) составляет приблизительно 600-700 л, а срок службы масла — 20 000-30 000 ч. Для этих областей применения рекомендуются полусинтетические турбинные масла (специально гидроочищенные базовые масла) — так называемые масла группы III — или полностью синтетические масла на базе синтетических ПАО. В гражданской и военной авиации газовые турбины применяются в качестве тяговых двигателей. Так как в этих турбинах температура очень высокая, для их смазки применяют специальные маловязкие (ISO VG 10, 22) синтетические масла на базе насыщенных сложных эфиров (например, масла на базе сложных эфиров полиолов). Эти синтетические сложные эфиры, применяемые для смазки авиационных двигателей или турбин, имеют высокий индекс вязкости, хорошую термическую стойкость, окислительную стабильность и превосходные низкотемпературные характеристики. Некоторые из этих масел содержат присадки. Их температура застывания находится в пределах от —50 до —60 °С. И, наконец, эти масла должны отвечать всем требованиям военных и гражданских спецификаций на масла для авиационных двигателей. Смазочные масла для турбин самолетов в некоторых случаях могут также применяться для смазки вертолетных, судовых, стационарных и индустриальных турбин. Применяются также авиационные турбинные масла, содержащие специальные нафтеновые базовые масла (ISO VG 15-32) с хорошими низкотемпературными характеристиками.

10. Огнестойкие жидкости, не содержащие воды, применяемые на электростанциях

В целях безопасности в контурах регулирования и управления, подверженных опасностям возгорания и пожаров, применяются огнестойкие жидкости. Например, на электростанциях это относится к гидравлическим системам в высокотемпературных зонах, в частности вблизи перегретых паровых труб. Огнестойкие жидкости, применяемые на электростанциях, как правило, не содержат воды; это синтетические жидкости на базе сложных эфиров фосфорной кислоты (типа DFD-R по DIN 51 502 или ISO VG 6743-0, ISO VG 32-68). Эти HFD жидкости обладают следующими особенностями. Спецификации турбинных жидкостей на базе сложных триарилфосфатов описаны в ISO/DIS 10 050 — категория ISO-L-TCD . Согласно им такие жидкости должны обладать:
. огнестойкостью;
. температурой самовозгорания выше 500 "С;
. стойкостью к самоокислению при поверхностных температурах вплоть до 300 °C;
. хорошими смазочными свойствами;
. хорошей защитой от коррозии и износа;
. хорошей стойкостью к старению;
. хорошей деэмульгируемостью;
. низкой вспениваемостью;
. хорошими деаэрационными характеристиками и низким давлением насыщенных паров.
Для улучшения окислительной стабильности иногда применяют присадки (возможно, ингибиторы пенообразования), а также ингибиторы ржавления и коррозии. В соответствии с 7-м Люксембургским докладом (The 7th Luxembourg Report ) максимально допустимая температура HFD жидкостей в гидродинамических системах составляет 150 °С, а постоянные температуры жидкостей не должны превышать 50°C. Эти синтетические жидкости на базе сложных эфиров фосфорной кислоты обычно применяются в контурах управления, но в некоторых особых случаях они также применяются и для смазки подшипников качения в турбинах (а также в других гидравлических системах паровых и газовых турбин). Однако системы должны быть сконструированы с учетом того, что будут использоваться именно эти жидкости (HFD — совместимые эластомеры, окраска и покрытия). В стандарте (E)DIN 51 518 перечислены минимальные требования к жидкостям для систем управления электростанций. Дополнительную информацию можно почерпнуть в инструкциях и спецификациях, связанных с огнестойкими жидкостями, например в VDMA лист 24317 и в СЕТОР рекомендациях R 39 Н и R 97 H . Информация, связанная с заменой одной жидкости на другую, содержится в VDMA лист 24314 и СЕТОР Rp 86 H.

11. Смазка гидротурбин и гидроэлектростанций

Персонал гидроэлектростанций должен обращать особое внимание на использование водозагрязняющих веществ, таких как смазочные материалы. На ГЭС используются масла как с присадками, так и без них. Они применяются для смазки подшипников и коробок передач на главном и вспомогательном оборудовании, а также средств регулирования и управления. При выборе смазочных материалов следует учитывать специфические условия эксплуатации на гидростанциях. Масла должны обладать хорошими водовыделяющими и деаэрационными свойствами, низкой вспениваемостью, хорошими антикоррозионными свойствами, высокими противоизносными свойствами (FZG ступень нагрузки в коробках передач), хорошей стойкостью к старению и совместимостью со стандартными эластомерами. В связи с тем, что отсутствуют установленные стандарты на масла для гидротурбин, основные требования к ним совпадают со спецификациями на общие турбинные масла. Вязкость масел для гидротурбин зависит от типа и конструкции турбины, а также от рабочей температуры, и может находиться в пределах от 46 до 460 мм 2 /с (при 40 °С). Для таких турбин применяют смазочные масла и масла для системы управления типа TD и LTD по DIN 51 515. В большинстве случаев одно и то же масло может применяться для смазки подшипников, коробок передач и систем управления. Обычно вязкость таких турбиных масел и масел для подшипников находится в пределах от 68 до 100 мм 2 /сек. При запуске турбин температура масел, используемых в системах управления, не должна опускаться ниже 5 °С, а температура масел для смазки подшипников не должна быть ниже 10 °С. Если оборудование находится в холодных окружающих условиях, настоятельно рекомендуется установка подогревателей масла. Масла для гидротурбин не испытывают сильных термических нагрузок, а их объемы в резервуарах довольно высоки. В связи с этим срок службы турбинных масел довольно велик. На гидроэлектростанциях интервалы отбора масел для анализа могут быть соответственно удлинены. Особенное внимание следует обращать на уплотнение контуров циркуляции турбинных смазочных масел для исключения попадания воды в систему. В последние годы успешно применяются биологически разлагаемые турбинные масла на базе насыщенных сложных эфиров. По сравнению с минеральными маслами эти продукты легче поддаются биологическому разложению и относятся к более низкой категории загрязнителей воды. Кроме того, гидравлические масла типа HLP46 (с присадками, не содержащими цинка), быстро биологически разлагаемые жидкости типа HEES 46 и пластичные смазки NLGI сорта 2 и 3 применяются на гидроэлектростанциях.

Роман Маслов.
По материалам зарубежных изданий.

ОБЩИЕ СВЕДЕНИЯ

:

Агрегатное состояние. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . жидкое

Внешний вид. . . . . . . . вязкая жидкость от светло-желтого до темно-коричневого цвета.

Запах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . специфический.

Применение: для смазывания подшипников и вспомогательных механизмов турбоагрегатов (паровых и газовых турбин, турбокомпрессорных машин, гидротурбин), а также для работы в системах регулирования этих машин в качестве гидравлической жидкости.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность при 20 °С, кг/м3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860-900

Температура застывания при давлении 101,3 кПа, °С:

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 15

Марка Т30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Марка Т46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Удельная теплота сгорания, кДж/кг. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41870

Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не растворимо.

Реакционная способность: растворяется в растворителях, масла - химически инертны.

САНИТАРНО-ГИГИЕНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Регистрационный номер по CAS для масел минеральных нефтяных. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8042-47-5

Класс опасности в воздухе рабочей зоны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р. в воздухе рабочей зоны, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Код вещества, загрязняющего атмосферный воздух. . . . . . . . . . . . . . . . 2735

ОБУВ в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,05

Воздействие на людей: малотоксичное. Хроническое отравление может привести к заболеваниям кожи: масляный фолликулит, токсические меланодермии, экземы, кератозы, папилломы.

Меры предосторожности: в помещениях запрещается обращение с открытым огнем. Электрооборудование, искусственное освещение должны быть во взрывобезопасном исполнении. Не допускается использовать инструменты, дающие искру при ударе. Помещение должно быть оснащено вентиляцией.

Средства защиты: следует применять индивидуальные средства защиты: респираторы, резиновые перчатки, спецодежду, фартук. Не допускать попадания препарата внутрь организма.

Методы перевода вещества в безвредное состояние: при разливе масла необходимо собрать его в отдельную тару, место разлива засыпать песком с последующим удалением массы песка, пропитанного маслом.

ПОЖАРОВЗРЫВООПАСНЫЕ СВОЙСТВА

Группа горючести. . . . . . . . . . . . . . . . . . . . . . . . . . . . . трудногорючая жидкость

Температура вспышки, °С

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Марка Т57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Температура самовоспламенения, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Средства пожаротушения: . . . . . . . воздушно-механическая пена, порошки.